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Reliable predictions for species range changes
require a mechanistic understanding of range
dynamics in relation to environmental variation.
One obstacle is that most current models are static
and confound occurrence with the probability of
detecting a species if it occurs at a site. Here we
draw attention to recently developed occupancy
models, which can be used to examine coloniza-
tion and local extinction or changes in occupancy
over time. These models further account for
detection probabilities, which are likely to vary
spatially and temporally in many datasets. Occu-
pancy models require repeated presence/absence
surveys, for example checklists used in bird atlas
projects. As an example, we examine the recent
range expansion of hadeda ibises (Bostrychia
hagedash) in South African protected areas. Colo-
nization exceeded local extinction in most biomes,
and the probability of occurrence was related to
local climate. Extensions of the basic occupancy
models can estimate abundance or species rich-
ness. Occupancy models are an appealing
additional tool for studying species’ responses to
global change.

Keywords: Bostrychia hagedash; colonization;
detection probability; extinction; global change;
occupancy model

1. INTRODUCTION
Predicted changes in biodiversity due to global change
are mainly based on static species distribution models
relating observed species occurrence to climate
(Thomas ez al. 2004; Huntley ez al. 2006). An essential
next step is to quantify range changes, local extinctions
and colonizations, and relate them to environmental
variation. This requires data on species occurrence at
a fine spatio-temporal scale. At this scale, a major
difficulty for understanding geographical distributions
of animals is that species are not detected everywhere
they occur (McArdle 1990), especially where they are
rare, such as at the edge of their range.

Most current species distribution models (Guisan &
Thuiller 2005) either require presence/absence data
without attempting to separate true and false absences,
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or they use presence-only data and do not use possible
information on absences (but see Wintle er al. (2005)
and Latimer ez al. (2006) for static approaches incor-
porating detection probability). These models con-
found occurrence (¥) and the probability of detecting
a species given that it occurs at a particular site (p). If
p<1, they underestimate ¥. Furthermore, p probably
varies spatially and can confound patterns in occur-
rence if not accounted for. Even if p is close to 1,
static models (e.g. generalized linear models, GLMs)
cannot directly relate the causal processes, such as
extinction and colonization, to environmental vari-
ables. Our aim is to draw attention to occupancy
models (MacKenzie er al. 2002, 2003, 2006) and
their use for inferring species occurrence and its
temporal dynamics in the face of imperfect detection.

2. MATERIAL AND METHODS

Occupancy models need repeated visits to a site and the infor-
mation whether the species was recorded or not (1 or 0). A survey
history is then constructed; for example, 101 represents the case
where the species was detected on the first and third visit but not
on the second visit. Evidently, the species occurs at this site,
assuming the visits were made during a short time interval so that
the species did not go locally extinct and recolonized the site during
the study. The probability of observing the above survey history
in terms of occupancy (¥) and detection rate (p, for survey x)
is Prig; =%p,(1—py)ps. The survey history for a site where the
species was never detected would be 000, and the probability
of observing it is the sum of two possibilities; either the species
was absent from the site or it was present but never detected:
Progo=1—¥)+¥ (1 —p;)(1—p5)(1—p3). The likelihood of observ-
ing a set of survey histories is the product of the probabilities
of observing each survey history, and the parameters (¥ and p) can
be found by maximum-likelihood or Bayesian methods (MacKenzie
et al. 2002). The parameter ¥ is the proportion of sites that
are occupied, corrected for the probability that the species has
been missed.

For modelling species occurrence in relation to climate or other
factors, ¥ and p are modelled as functions of covariates (x;), with
coefficients 8 to be estimated,
logit(W) = 6o + Y _ Bix;.

This model is similar to GLMs used for bioclimatic modelling,
except that it accounts for imperfect detection, which may vary in
relation to observed covariates (e.g. observer skills, visibility, habitat
structure). Non-parametric relationships between ¥ (or p) and
climatic variables can be used in this type of model (Gimenez et al.
2006), in analogy to the generalized additive models also often used
for bioclimatic modelling.

Dynamics in occupancy can be examined with multi-season
occupancy models (MacKenzie et al. 2003). For each season, the
design is as described above. Between seasons, however, coloniza-
tion and local extinctions can take place. Consider a sampling
design where sites were visited twice per year for 3 years. One
possible survey history could be 01 00 10. The species was detected
during the second visit of the first year and the first visit of the third
year. It was not detected during the second year. The species was
either present during the whole time period but not detected during
the second year, or it went extinct between the first and the second
year and recolonized the site between the second and third year.
The probability of observing this particular survey history is

Proj g0 10 = W1 (1 — p1,1)p120(1— e)(1 = po 1 )(1 — p22)(1 — &)

+e1v21p31(1— p32),

where ¢ and vy are extinction and colonization probabilities,
respectively. For p, the first subscript indicates year and the second
indicates survey number. Subscripts of other parameters indicate
year. Extinction and colonization rates can be examined as a
function of covariates, as mentioned previously. Occupancy during
the first season (%) is estimated directly and changes in occupancy
are derived from the estimated extinction and colonization rates.
Variants of the model directly estimate occupancy in each season
and its dependence on covariates (MacKenzie ez al. 2006).

These models can be fitted with the free softwares MARK (used
here; White & Burnham 1999, http://welcome.warnercnr.colostate.
edu/~ gwhite/mark/mark.htm) and Presence (Hines 2006, http://
www.mbr-pwrc.usgs.gov/software/presence.html).
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Figure 1. Map of South Africa/lLesotho/Swaziland showing the sites at which the data were collected (open circles, weather
stations; plus symbols, Birds in Reserves Project (BIRP) sites) and the biomes used in the analysis. A further biome, not

indicated in the keys, consists of near-shore islands.

(a) Hadeda range dynamics
We used occupancy models to examine range dynamics of the
hadeda ibis (Bostrychia hagedash) in South Africa between 1994 and
2006. Hadedas have apparently expanded their range since 1900
(Macdonald ez al. 1986). We used distribution data collected by the
Birds in Reserves Project of the Animal Demography Unit,
University of Cape Town (available at http://www.birds.sanbi.org/
birp/birp_frameset_parent.htm). Volunteers visited 922 protected
areas across South Africa between 1994 and 2006, and filled in a
checklist of all the bird species they observed (figure 1). Not all
reserves were visited in every year. There were 4526 reserve-by-year
combinations with 1-153 checklists (median 3) collected each.
Hadedas feed mostly on invertebrates they extract from soft
ground. As climatic variables affecting their distribution, we
consider annual total rainfall, mean daily minimum temperature of
the coldest month and mean daily maximum temperature of the
hottest month, which we hypothesize affect access to food. We used
mean climate as site-specific covariates on occupancy and annual
deviations from the mean climate as year- and site-specific
covariates on extinction and colonization. The weather data were
collected at 136 weather stations across South Africa. We assigned
each reserve to the nearest weather station (distance 0-149 km,
median 26 km) using a geographical information system.
Furthermore, we expected all components of the model to vary
between eight biome types recognized in South Africa: savannah
(350 sites); grassland (215); forest (54); thicket (87); fynbos (144);
Nama Karoo (20); succulent Karoo (28); and islands (24, treated
separately here even though this is not a biome strictly speaking;
hadedas rarely occur here).

3. RESULTS

Model selection favoured the model where initial
occupancy depended on climate (model 3, table 1).
The occupancy rate increased with higher minimum
temperatures (8=0.010, 95% confidence interval
(CI)=0.006-0.013), and tended to increase with
decreasing maximum temperature (8= —0.091,
CI=—0.209-0.027) and increasing rainfall (6=0.223,

Biol. Letz. (2008)

Table 1. Model selection results for multi-season occupancy
analysis of the hadeda ibis (Bostrychia hagedash) in South
Africa. (The model components are initial occupancy (¥),
extinction (e), colonization (y) and detection probabilities
(p). Subscripts indicate covariates (b, biome; y, year; clim,
climate) in each model component. We based model selec-
tion on Akaike’s information criterion (AICc; Burnham &
Anderson 2002), where a smaller value indicates a better
model (the best model in bold), and K is the number of
parameters. Interactions are indicated by the multiplica-
tion sign, while the plus sign denotes models with main
effects only.)

model AlICc K  deviance
1 WoeoYoPoxy 30207.86 128 29 944.340
2 Wt Yooty 30405.92 41 30323.149
3 W im+b&bYbPoxy 30 139.62 131 29 869.744
4 W im i bEo vt yPbxy 30161.41 153 29 844.621
5 W im t bfctim 4 bYelim+ bPbxy 30 141.12 137 29 858.490

CI=—0.033-0.479), as we expected. Adding annual
variation in climate as a covariate on extinc-
tion and colonization did not improve the model
(model 5, table 1).

Extinction and colonization varied among biomes,
and the detection probability varied among biomes
and years. However, we could not estimate all
parameters for the Nama Karoo and islands, for
which we had little data. In all other biomes, except
forest and fynbos, colonization exceeded extinction,
and hadedas thus occupied more sites over time.
Occupancy declined in forests and fynbos (figure 2).
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Figure 2. The proportion of South African protected areas occupied by hadedas between 1994 and 2006, predicted by
occupancy model 3 given in table 1 (bold symbols) and a GLM with biome-specific time trends, but not accounting for
detection probability (plain symbols). G,g, grassland; S,s, savannah; K,k, succulent Karoo; n, Nama Karoo; i, islands; T,t,

thicket; F,f, forest; Y,y, fynbos.

We compared these results with a GLM, converting
the checklists to presence/absence by years for each
reserve. Not accounting for the detection probability,
the GLM predicted lower occupancy rates, especially
in the succulent Karoo and forest (figure 2). The
GLM suggested an increased occupancy rate over
time in fynbos, in contrast to the occupancy model,
which suggests that the detection rate rather than
occupancy increased over time. A time trend in
detection rate could be due to increasing abundance
in already occupied sites.

4. DISCUSSION
Do species change their ranges in response to climate
change? If so, how fast? Do they colonize new areas that
have become climatically suitable and go extinct from
areas that became climatically unsuitable? Does the
climatic niche shift over time (Broennimann et al.
2007)? These are pressing questions, and together with
suitable datasets, multi-season occupancy models can
be used to answer them because they can be used to
examine factors affecting the dynamics of species
occurrence. Multi-season occupancy models have
only just begun to be applied to large spatial scales
(MacKenzie ez al. 2006, p. 201; Eraud ez al. 2007).
Occupancy models require repeated visits to a
sample of the sites about which inference is to be
drawn. Given that relatively large spatial and temporal
scales are of interest in climate change biology, this
requirement may appear difficult to meet. However,
we think that many existing datasets are amenable to
the approach. In our example, we used checklists
collected by volunteers, and such data are collected in
many countries, for example, for atlas projects (birds:
Greenwood 2007). Occupancy models have also been
used with transect data, taking stations along trans-
ects as replicated observations (MacKenzie er al.
(2006), p. 201 used North American Breeding Bird
Survey data).

Biol. Letz. (2008)

Occupancy models are being developed rapidly. If
heterogeneity in detection probabilities is mainly
caused by variation in abundance, these models can
be used to estimate abundance (Royle & Nichols
2003) from repeated presence/absence surveys (or
counts; Royle 2004). Other extensions estimate
species richness from repeated survey data (Dorazio
et al. 2006) and could be used to relate changes in
biodiversity to climate or land-use change.

Our aim was to draw attention to the recently
developed occupancy models, and their usefulness for
understanding the range dynamics of species that are
imperfectly detected. An advantage of occupancy
models is that the detection process is incorporated
into the model and factors thought to affect detection
can be accounted for.
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